Wybrane problemy diagnostyki dziecka niepełnosprawnego

Anna Bogucka-Kocka
Janusz Kocki

(Redakcja)
CYTOGENETYKA INTEFAZOWA
W DIAGNOSTYCE CYTOGENETYCZNEJ
KONSTYTUCYJNYCH
I NIEKONSTYTUCYJNYCH ABERRACJI
CHROMOSOMOWYCH

Maria Constantinou, Bogdan Kałużewski
Zakład Genetyki Medycznej, Uniwersytet Medyczny w Łodzi, 94–425 Łódź, ul. Sterlinga
1/3, Tel/fax: (42) 632–70–02, E-mail: majcon@kardio-sterling.lodz.pl

Słowa kluczowe: cytogenetyka interfazowa, FISH, diagnostyka prenatalna, plemniki,

WPROWADZENIE

Badania nad ludzkimi chromosomami są prowadzone od ponad 100 lat. Syntetyczny, ale jak sądzimy trafny opis rozwoju chromosomologii podał Victor A. McKusick, dzieląc historię rozwoju tej dyscypliny na pięć okresów: (1) 1882–1956 (gestation), okres od podania pierwszego opisu ludzkich chromosomów do określenia ich charakterystycznej dla gatunku liczby, (2) 1956–1966 (golden age) okres spektakularnych odkryć na polu cytogenetyki klinicznej, (3) 1966–1969 (resting phase) okres w którym odnotowano niewiele nowych obserwacji, zwany też okresem „in the doldrums” (4) 1969–1977 okres badań chromosomów technikami prążkowymi, które ułatwiły jednoznaczną klasyfikację chromosomów oraz dały możliwość wykrywania aberracji subchromosomowych, (5) 1977 do chwili obecnej „era cytogenetyki molekularnej” [1]. Obecnie powszechnie używanym narzędziem diagnostycznym cytogenetyki molekularnej jest technika FISH [2, 4, 5, 6, 7]. Dzięki połączeniu klasycznych technik cytogenetycznych i metod opartych na hybrydyzacji In situ możliwe stało się mapowanie (lokализowanie) pojedynczych kopii genów w obrębie chromosomów [5, 6, 7]. W efekcie, w sposób istotny zwiększyły się możliwości diagnostyczne chorób uwarunkowanych genetycznie (np.: określenie etiopatogenezy większości zespołów mikrodelecycjnych, identyfikowanie chromosomów markerowych) oraz chorób nowotworowych (np.: mapowanie onkogenów, zidentyfikowanie genów fuzyjnych i określenie ich roli.
Prenatalna cytotenetyka interfażowa

Analiza cytotenetyczna zajmuje szczególne miejsce w diagnostyce prenatałnej, głównie ze względu na to, że jest nieradko jedynym dostępnym badaniem, które może być przeprowadzone w relatywnie krótkim czasie i którego wynik może stanowić podstawę do wydania epikryzy rokovniczej. Szczególnie istotne w diagnostyce prenatałnej są: czas oczekiwania na wynik badania oraz unikalny charakter materiału diagnostycznego. Powyższe okoliczności, znacznie ograniczają możliwość weryfikowania i uzupełniania badań cytotenetycznych przez stosowanie innych technik z zakresu cytotenetyki molekularnej lub biologii molekularnej, niezależnie od posiadanej zaplecza metodycznego [3, 8]. Detekcja aberracji chromosomowych w diagnostyce prenatałnej zazwyczaj polega na badaniu chromosomów metafażowych technikami tradycyjnymi charakteryzującymi się relatywnie długim czasem oczekiwania na wynik ze względu na etap hodowli tkanek *in vitro*. Aplikacja wielokolorowej techniki FISH do niehodowanych amnicytów znacząco skraca czas oczekiwania na wynik przez możliwość analizowania jąder interfazowych bezpośrednio po uzyskaniu próbki płynu owodniowego [2, 4]. Przykładem jest test MultiVysion PGT, który umożliwia jednoczesną detekcję aneuploidii chromosomów 13, 18, 21, X i Y [Ryc. 1A]. Wynik testu, potwierdzający lub wykluczający obecność badanej aneuploidii dostępny jest po kilkunastu godzinach od zabiegu amniiocentezy. Badanie umożliwia także określenie płci chromosomowej płodu, co ma szczególne znaczenie w przypadku podejrzenia u płodu choroby monogenowej sprzężonej z płcią, zwłaszcza wtedy, gdy badanie w kierunku swoistej mutacji nie jest możliwe do przeprowadzenia w krótkim czasie. Detekcja powszechnych aneuploidii w niehodowanych amnicytach może być pomocna i powinna być stosowana jako metoda z wyboru w uzasadnionych klinicznie przypadkach, w których stwierdza się wyższe od populacyjnego ryzyko aneuploidii płodu określone prenata-
talnymi testami przesiewowymi oraz wtedy gdy istnieje konieczność przeprowadzenia diagnostyki prenatalnej w ciąży powyżej 20 hbd. W pierwszym przypadku za celowość przeprowadzenia badań z wykorzystaniem techniki interfazowej przemawiają względy emocjonalno-etyczne, zachęcające lekarza i diagnostę do podjęcia działań skracających do niezbędnego minimum czas oczekiwania ciężarnej na wynik badań.

CYTOGENETYKA MOLEKULARNA W DIAGNOSTYCE PREKONCEPCYJNEJ MĘŻCZYZN

Nosicielstwo zrównoważonych translokacji chromosomowych w dalszym ciągu jest trudnym problemem poradnictwa genetycznego. Translokacje Robertsonowskie oraz zrównoważone translokacje wzajemne zwykle nie powodują bezpośrednich skutków klinicznych, mogą jednak być przyczyną powtarzających się poronień samoistnych we wczesnym okresie ciąży lub ujawniać się dopiero w procesie rozrodu powodując u nosiciela niepłodność. Obecność translokacji w kariotypie może wpływać na uprzedzenie procesu spermatogenezy i obniżenie parametrów ilościowych i jakościowych próbki nasienia. U nosicieli translokacji wzajemnych można obserwować również zwiększeny odsetek chromosomowo niezrównoważonych gamet, które mogą zmniejszać powodzenie rozrodu oraz zwiększać ryzyko przekazania aberracji chromosomowej potomstwu [9]. Z tych powodów ocena częstości występowania niezrównoważenia chromosomowego na poziomie komórek germinalnych jest metodą z wyboru, która poprzedza kwalifikację pacjentów do programu wspomagającego rozrodu (Ryc 1B). Częstość powstawania plemników wykazujących niezrównoważony kariotyp zależy nie tylko od rodzaju translokacji chromosomowej, ale także od możliwej gonadalnej mozaikowości chromosomowej oraz wpływu szeregu nieudokumentowanych czynników egzogennych [10]. Dlatego podobną diagnostykę można zaproponować także pacjentom z prawidłowym kariotypem i oligozoospermią, u których stwierdzono niepowodzenia rozrodu w wywiadzie. W tych przypadkach ocena może obejmować określenie częstości występowania powszechnych aneuploidii chromosomowych w plemnikach (test MultiVysion PGT) (Ryc. 1C).

ANALIZA CYTOGENETYCZNA NOWOTWORÓW UKŁADU KRWIOtwÓRCZEGO

U podłoża rozwoju nowotworu leżą zmiany genetyczne, które mogą określać dany typ nowotworu oraz jego przebieg kliniczny. Aberracje
chromosomowe mają charakter nabyty, tzn.: występują jedynie w komórkach zmienionych nowotworowo. Jeżeli występują w w/w komórkach z dużą częstością i są swoiste dla danego typu nowotworu, mogą być wykorzystane w diagnostyce nowotworowej jako biomarkery genetyczne choroby nowotworowej. Największe znaczenie kliniczne mają obecnie niektóre aberracje chromosomowe rozpoznawane w chorobach nowotworowych układu krwiotwórczego, z których najpowszechniejsze są translokacje zrównoważone, w wyniku których, dochodzi do fuzji genowych specyficznych dla danego typu białaczki. Badanie cytotenetyczne komórek szpiku – stwierdzenie obecności lub braku charakterystycznych aberracji chromosomowych stanowi podstawę rozpoznania w przypadkach białaczek i chloniaków [11]. Dodatkowo umożliwia diagnostykę różnicową zespołów mieloproliferacyjnych, np.: u ponad 90% chorych na przewlekłą białaczkę szpikową stwierdza się obecność translokacji t(9;22) w wyniku, której dochodzi do fuzji genów BCR/ABL. Drugim aspektem badania kariotypu szpiku w przypadkach białaczek jest wartość rokownicza, wynikająca z obecności lub braku charakterystycznych aberracji chromosomowych. Od rodzaju stwierdzanych aberracji chromosomowych w komórkach szpiku transformowanych nowotworowo zależy przebieg kliniczny danej białaczki [5]. Przy czym niektóre aberracje chromosomowe mają korzystne znaczenie (hiperhaploidny kariotyp w ostrej białaczce limfoblastycznej, t(15;17) lub inv(16) w ostrej białaczce szpikowej), inne niekorzystne znaczenie rokownicze (np.: t(9;22) oraz reanrancja genu MLL (11q23) w ostrej białaczce limfoblastycznej czy monosomia ramion długich chromosomu 5 lub 7 w ostrej białaczce szpikowej). Ustalenie profilu cytotenetycznego białaczki pozwala na określenie wrażliwości na chemioterapię i wybór optymalnego sposobu leczenia. Stosowane odrębnie metody analizy cytotenetycznej – badanie kariotypu komórek szpiku czy oce na cytotenetyczno-molekularna (technika FISH) nie pozwalają na pełną charakterystykę aberracji chromosomowych stwierdzanych w nowotworach układu krwiotwórczego. Identyfikacja wielu aberracji chromosomowych wymaga stosowania algorytmów postępowania diagnostycznego wykorzystujących obydwie metody. Dzięki cytotenetyce interfazowej możliwe jest badanie komórek w rozmazie bezpośrednim ze szpiku, pod kątem swoistej fuzji genowej [Ryc. 1D]. Opisywane badanie skutecznie uzupełnia klasyczną diagnostykę cytotenetyczną białaczkę ze względu na możliwość oceny komórek nie poddawanych hodowli In vitro. Trzecim aspektem badania kariotypu szpiku jest ocena skuteczności leczenia poprzez monitorowanie komórek szpiku pod kątem swoistej aberracji chromosomowej oraz monitorowanie choroby resztkowej. W tym przypadku cytotenetyka interfazowa jako badanie „celowane” na daną reanrancję chromosomową jest szczególnie przydatna do oceny remisji choroby.
PODZIĘKOWANIA

Praca była finansowana w ramach grantu KBN nr N407 010 32/0269. Dziękujemy dr Markowi Tichek za skierowanie do naszej poradni ciężarnej na badania prenatalne (przypadek A), dr Grażynie Sobaj-Sucharskiej za skierowanie małżeństwa z niepowodzeniami rozrodu (przypadek B).
Dziękujemy Pani dr Małgorzacie Stolarskiej z Oddziału VII, Kliniki Pediatrii, Uniwersyteckiego Szpitala nr 4 w Łodzi za udostępnienie opisu klinicznego pacjenta (przypadek D).

BIBLIOGRAFIA

2. Constantinou M., Kałużewski B., Kliniczne aplikacje technik cytogenetyki molekularnej w procesie diagnostyki prenatalnej wybranych przypadków aberracji chromosomowych, Medical Science Review 2004; 34–43.
9. Egozcue S., Vendrell JM., Garcia E., Veiga A., Aran B., Barri PN., Egozcue J., Increased Incidence of Meiotic Anomalies in Oligoasthenozo-

OPISY RYCIN

Rycina 1.

B. Określenie częstości występowania aneuploidii chromosomów 13, 18, 21, X i Y w plemnikach. 37-letni pacjent z rozpoznaną w rutynowym badaniu nasienia oligozoospermia został skierowany na diagnostykę genetyczną przed zastosowaniem technik wspomaganego rozrodu. Kariotypa pacjenta i jego partnerki były prawidłowe. W badaniu plemników metodą FISH nie stwierdzono znamiennego statystycznie zwiększenia częstości plemników aneuploidalnych. Liczba poszczególnych sygnałów w grupach plemnikowych odpowiada ilości kopii badanego chromosomu. Strzałki zielona i żółta wskazują plemniki z prawidłową liczbą badanych chromosomów i żeńską płcią chromosomową (strzałka zielona) lub męską płcią chromosomową (strzałka żółta), natomiast strzałki czerwone prezentują plemniki aneuploidalne.

C. Określenie częstości występowania plemników z niezrównoważeniem chromosomów 1 i 4. 36-letni nosiciel translokacji – t(1;4) z rozpoznaną w rutynowym badaniu nasienia oligostoospermą został skierowany
na diagnostykę genetyczną przed zastosowaniem technik wspomaganego rozrodu. Kariotyp partnerki był prawidłowy. W badaniu plemników metody FISH stwierdzono, że 60% plemników wykazujących ruch ma niezrównoważony kariotyp skąd my to wiemy? Dwukrotnie po zastosowaniu ICSI uzyskano ciąży. Za każdym razem w 8 tygodniu ciąży nie stwierdzano akcji serca u płodu. Liczba poszczególnych sygnałów w główkach plemnickowych odpowiada ilości kopii zaangażowanych w translokację fragmentów ramion długich chromosomów par 1 i 4. Strzałka zielona wskazuje plemniki z prawidłową liczbą badanych chromosomów, natomiast strzałka czerwona prezentuje plemniki aneuploidalne.

D. Fuzja genowa BCR/ABL w komórkach szpiku rozpoznana metodą FISH w komórkach szpiku z rozmału bezpośredniego. Pacjent 5-letni z rozpoznaną ostrą bialaczką mieloblastczną (AML) skierowany przed rozpoczęciem leczenia na badanie genetyczne w kierunku fuzji BCR/ABL. Po wykonaniu badania metodą FISH rozpoznano fuzję w 90% komórek. Strzałki wskazują dwa sygnały fuzyjne, powstałe w wyniku złożenia genów BCR i ABL – t(9;22). Pozostałe sygnały – zielony i czerwony widoczne w komórkach odpowiadają kopiom genów ABL i BCR, zlokalizowanych na chromosomach 9 i 22, które nie są zaangażowane w rearanżację.

Rycina 1.
<table>
<thead>
<tr>
<th>Pacjent</th>
<th>Płeć/ wiek</th>
<th>Obraz kliniczny</th>
<th>Rozpoznanie wstępne</th>
<th>CGH 2</th>
<th>FISH</th>
<th>M-FISH</th>
<th>Rozpoznanie ostateczne</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F/6 lat</td>
<td>Opóźnienie rozwoju umysłowego o niejednolitej etiopatogenezie.</td>
<td>46,XX</td>
<td>balanced</td>
<td>-</td>
<td>-</td>
<td>46,XX</td>
</tr>
<tr>
<td>2</td>
<td>F/10 lat</td>
<td>Opóźnienie rozwoju umysłowego o niejednolitej etiopatogenezie.</td>
<td>46,XX</td>
<td>balanced</td>
<td>-</td>
<td>-</td>
<td>46,XX</td>
</tr>
<tr>
<td>3</td>
<td>F/11 lat</td>
<td>Uposłedzenie rozwoju psychomotorycznego, wysoki, długie zęby, stopy i dłonie o prawidłowej wielkości, otyłość nierównomiernie rozłożona, skrócenie lebaczki.</td>
<td>46,XX</td>
<td>dim(15q12)3</td>
<td>SNRPN+ D15S10-</td>
<td>-</td>
<td>46,XX, del(15) (q11q13)</td>
</tr>
<tr>
<td>4</td>
<td>M/45 lat</td>
<td>Mężczyzna XX</td>
<td>46,XX</td>
<td>enh(Yp11.32pter)3</td>
<td>SRY- TSPY- WCPY+</td>
<td>XY</td>
<td>46,XX, t(X;Y) (p;p11.32)</td>
</tr>
<tr>
<td>5</td>
<td>M/42 lat</td>
<td>Hermafrodyta prawdziwa XX</td>
<td>46,XX</td>
<td>enh(Yp11.2pter)</td>
<td>SRY- TSPY+ STS+ WCPY+</td>
<td>t(X;Y)</td>
<td>46,XX, t(X;Y) (p;p11.2)</td>
</tr>
<tr>
<td>6</td>
<td>F/6 miesiąc</td>
<td>Hipotonia, opóźnienie rozwoju psychomotorycznego, cechy dysmorfiów twarzowej, klinodaktylia 5-go palca</td>
<td>46,XX</td>
<td>dim(12p12.2p12.3)3</td>
<td>12pter+</td>
<td>-</td>
<td>46,XX, del(12) (p12.1p13.1)</td>
</tr>
<tr>
<td>7</td>
<td>F/6 lat</td>
<td>Fenotyp zespołu Turner'a</td>
<td>45,X[60%]/46,XX[40%]</td>
<td>dim(Xpterqter)</td>
<td>-</td>
<td>-</td>
<td>45,X/46,XX</td>
</tr>
<tr>
<td>#</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, atresja dwunastnicy, zwiększone echogeniczność jelita grubego</td>
<td>47,XY,+21</td>
<td>enh(21q11.1qter)</td>
<td>D13S319x2 D21S22x3 D18Z1x2 DXZ1x1 DYZ3x1</td>
<td>-</td>
<td>47,XY,+21</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>--</td>
<td>-----------</td>
<td>-----------------</td>
<td>--</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, wiek ciążyżarnej powyżej 35 rż, wady w USG</td>
<td>47,XX,+13</td>
<td>enh(13q11.1qter)</td>
<td>D13S319x3 D21S22x2 D18Z1x2 DXZ1x2 DYZ3−</td>
<td>-</td>
<td>47,XX,+13</td>
</tr>
<tr>
<td>10</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, wady w USG</td>
<td>447,XX,+18</td>
<td>enh(18q11.1qter)</td>
<td>D13S319x2 D21S22x2 D18Z1x3 DXZ1x2 DYZ3−</td>
<td>-</td>
<td>447,XX,+18</td>
</tr>
<tr>
<td>11</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, wiek ciążyżarnej 39 lat. Dziecko urodziło się zdrowe7.</td>
<td>69,XYY [35%]/46,XY [65%]</td>
<td>balanced</td>
<td>D13S319x3/ x2 D21S22x3/ x2 D18Z1x3/x2 DXZ1x1/x1 DYZ3x2/x1</td>
<td>-</td>
<td>46,XY</td>
</tr>
<tr>
<td>12</td>
<td>Diagnostyka prenatalna</td>
<td>Pregnant women aged 37 years.</td>
<td>47,XX,+mar</td>
<td>balanced</td>
<td>D15Z1+ SNRPN-WCP15−</td>
<td>-</td>
<td>47,XX,+15p (q10q10) UPD15mat4</td>
</tr>
<tr>
<td>Nr</td>
<td>Imię</td>
<td>Rola</td>
<td>Opis</td>
<td>Kary genetyczne</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>F/12 lat</td>
<td></td>
<td>Niski wzrost, wysuwanie powłok ciała, liczne znamiona barwnikowe, duże małżowniny uszne – nisko osadzone, zewnętrzne narzędzia płciowe – typu żeńskiego, nieznacznne skrócenie IV kośc śródręczca, hyperkortyzolema, podwójny układ kielichowo-międniczkowy</td>
<td>45,X(15%)/46,X+mar(85%); dim(Xp21.2p1ter); dim(Xq11.1q13.2); DXZ1+; XIST-</td>
<td>45,X/46,X+r(X) (p21.3q13.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>F/6 lat</td>
<td></td>
<td>Niski wzrost, niska linia owłosienia na karku, bez płetwistości szyi, brak skrócenia IV kości śródręczca, koślawość łokci, rozwój zewnętrznych narzędzi płciowych typu żeńskiego</td>
<td>45,X[30]/46,X+mar[70%]; dim(Yq11.22qter); DYZ3+; SRY-; DYZ1-</td>
<td>45,X/46,X+r(Y) (q10q11.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>M/11 lat</td>
<td></td>
<td>Szeroka nasada nosa, nisko osadzone małżowniny uszne, krótkie szyja, niezastapione jądra. Nadpobudliwość, ADHD, trudności w nauce, dysgrafia</td>
<td>46,X,+mar; dim(Yq11.1qter); DYZ1-; DYZ3+; SRY++</td>
<td>46,X,+i(Yp) (q10q10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>M/10 lat</td>
<td></td>
<td>Hipogonadyzm, opóźniony rozwój psychomotoryczny, cechy dysmorfii twarzoczaski</td>
<td>47,XY,+mar; balanced; D14Z/D22Z+; r(14); UPD(14)pat</td>
<td>47,XY,+r(14) (p11.2q11.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr</td>
<td>Płeć i wiek</td>
<td>Obserwacja</td>
<td>Karyotypyczne uwarunkowania</td>
<td>Cytogenetyka prenatalna</td>
<td>Inny komentarz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>F/2 lat</td>
<td>Obniżenie napięcia mięśniowego, opóźnienie rozwoju psychoruchowego, liczne cechy dysmorfii twarzoczaski</td>
<td>46,XX,r(18) (p11.2q23) (64%)/46,XX,del(18)(p11.2)(36%)</td>
<td>dim(18p11.31)3 dim(18q23)</td>
<td>D18Z1+ WCP18+ Tel18p+ Tel18q+ r(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Diagnostyka prenatalna, 16 hbd. W badaniu USG płodu stwierdzono powiększenie NT, nie stwierdzono innych nieprawidłości w budowie płodu. W teście „potrójnym” obserwowano wysokie stężenie wolnej beta-hCG. W 24 hbd stwierdzono wewnętrzniczą atrofię płodu z nieznacznymi cechami opóźnienia rozwoju płodu. Po autopsiji wrodzonych wad rozwojowych płodu nie stwierdzono.</td>
<td>47,XY,+mar [65%]/46,XY [35%]</td>
<td>enh(1p21p22)3</td>
<td>D31Z1+ WCP1+ neo r(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>M/17 years</td>
<td>Ginekomastia z niewielką ilością tkanki gruczołowej, otyłość, wysoki</td>
<td>47,XY,+mar(70%)/46,XY [30%]</td>
<td>enh(15q21q24)3</td>
<td>D15Z1+ WCP15+, PML+ neo r(15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>F/1 dzień</td>
<td>Liczne wady rozwojowe (MCA/MR)</td>
<td>45,XX,der(9;14)(t(p22;q12)),-14</td>
<td>dim(9p22.3pter)</td>
<td>45,XX,der(9;14) t(p11.1;q11.1),-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, translokacja rodzinna</td>
<td>46,XX,t(6;17)mat</td>
<td>balanced</td>
<td>-</td>
<td>-</td>
<td>46,XX,t(6;17)</td>
</tr>
<tr>
<td>22</td>
<td>M/8 lat</td>
<td>Niskorosłość, opóźnienie rozwoju umysłowego w stopniu lekkim</td>
<td>46,XY,t(7;9)(q21.3;p23)pat</td>
<td>balanced</td>
<td>-</td>
<td>-</td>
<td>46,XY,t(7;9)(q21.3;p23)pat</td>
</tr>
<tr>
<td>23</td>
<td>Diagnostyka prenatalna</td>
<td>Diagnostyka prenatalna, translokacja rodzinna</td>
<td>46,XY,t(7;9)(q21.3;p23)pat</td>
<td>balanced</td>
<td>-</td>
<td>-</td>
<td>46,XY,t(7;9)(q21.3;p23)pat</td>
</tr>
<tr>
<td>24</td>
<td>F/8 lat</td>
<td>Opóźnienie rozwoju umysłowego, nieliczne cechy dysmorfii w obrębie twarzowym</td>
<td>46,XX,add(18)</td>
<td>dim(3q25)</td>
<td>dim(18q21)</td>
<td>-</td>
<td>t(3;18)</td>
</tr>
</tbody>
</table>

1 F - kobieta, M - mężczyzna
2 dim (diminished), enh (enhanced)
3 obserwowano tylko z wykorzystaniem własnych krzywych dynamicznych
4 Disomia jednorodzicielska UPD15 (Constantinou M et al. 2003)